# ALI H. ALHADIDI

Associate professor/ Mechanical Engineering

227 Mechanical Engineering Department, University of Jordan, Amman 11942 – Jordan.



ahadidi@ju.edu.jo



00962-65355000 (Ext.) 22811



## **ABOUT ME**

I am an Associate Professor in the school of engineering at the University of Jordan where I have been a faculty member since 2016. My research interests lie in the area of nonlinear dynamics, energy harvesting, and vibrations. I teach a variety of undergraduate and graduate courses in the mechanical engineering department in dynamics-mechanical vibration and robotic systems.

# EDUCATION

2012 - 2016



Clemson University, Clemson, SC, USA.

Doctor Philosophy (Ph. D.) in Mechanical of Engineering.

2006 - 2009



University of Jordan, Amman, Jordan.

Master of Science (M.Sc.) in Mechanical Engineering.

2002 - 2006



University of Jordan, Amman, Jordan.

Bachelor of Science (BSc) in Mechanical Engineering.

## EXPERIENCE



University of Jordan

Assistant Dean for Students and Training affairs

Sep. 2021 – Now

School of engineering.



Associate Professor

Aug. 2021 – Now

School of engineering.

Relative courses: Advanced Finite Element Methods, Dynamics, Mechanical Vibrations, Robotics, Dynamics for civil engineers, Advanced dynamics.



Assistant Professor

Aug. 2016 – Aug. 2021

School of engineering.

Relative courses: Dynamics, Mechanical Vibrations, Robotics, Dynamics for civil engineers, system dynamics and control.



New York University Abu Dhabi

# Visiting Scholar

Sep. 2019 – Sep. 2020

Engineering Division.

Experimental research lab. Participated in a collaborative research

in the field of fluid structure interaction.



New York University Abu Dhabi

# Visiting Scholar

May - Aug. 2017

Mechanical Engineering Department.

Participated in a collaborative research with faculty in the area of

system dynamics and control.



University of Jordan

# Lecturer

Aug. 2011 - Aug. 2012

School of engineering.

Relative courses: Dynamics, Computer Applications for

Engineers, Systems Control, and Engineering Drawing.



University of Jordan

Graduate Research and Teaching Assistant.

Sep. 2006 - Jun.2009

Mechanical Engineering Department.

Conducted a research in the area of system dynamics and control,

and mechanical vibration lab assistance.



Royal Scientific Society

#### Part time lab Assistant

May 2007- Sep. 2008

Responsible for conduct research in the area of the mechanical vibration system, testing specimens under excessive vibration, and writing technical reports.

#### SELECTED PUBLICATIONS

**Philosophical** 

Alhadidi, A. H., Khazaaleh, S., & Daqaq, M. F.

Transactions of the Royal Society A, (2021) Suppression of galloping oscillations by injecting a high-frequency excitation.

Nonlinear Dynamics *(2021)*.

Noel, J., Alhadidi, A. H., Alhussien, H., & Daqaq, M. F.

A time-implicit representation of the lift force for coupled

translational—rotational galloping.

Nonlinear Dynamics (2021).

Alhadidi, A. H., & Gibert, J. M. (2021). A new perspective on static

bifurcations in the presence of viscoelasticity.

Applied Physics Letters

Alhadidi, A. H., Alhussein, H., & Daqaq, M. F.

Improving the sensitivity of galloping energy harvesters to flow *(2020)*.

fluctuations.

Journal of Vibration and Acoustics (2019).

Daqaq, M. F., Bibo, A., Akhtar, I., **Alhadidi, A. H.,** Panyam, M., Caldwell, B., & Noel, J.

Micropower Generation Using Cross-Flow Instabilities: A Review of the Literature and Its Implications.

Physica D: Nonlinear Phenomena (2016).

**Alhadidi, Ali H.**, Hamid Abderrahmane, and Mohammed F. Dagag.

Exploiting stiffness nonlinearities to improve flow energy capture from the wake of a bluff body.

Applied Physics Letters (2016).

Alhadidi, A. H., and Mohammed F. Daqaq.

A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon.

Journal of Applied Physics (2015).

Bibo, Amin, **Ali H. Alhadidi**, and Mohammed F. Daqaq. Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters.

International Design
Engineering Technical
and Computers and
Information in
Engineering
Conference (2016).

**Alhadidi, Ali H.**, Hamid Abderrahmane, and Mohammed F. Daqaq.

Utilizing Bi-Stability to Improve the Performance of Wake-Galloping Energy Harvesters in Unsteady Flow.

Dynamic Systems and Control Conference (2016). Alhadidi, A. H., and Mohammed F. Daqaq.

A Broadband Bi-Stable Wake-Galloping Flow Energy Harvester.

Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers (2015)

Alhadidi, Ali H., and Mohammed F. Daqaq.

Exploiting Bi-Stability to Enhance Energy Capture From Turbulent Flows.

Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014 **Alhadidi, Ali H.**, Amin Bibo, and Mohammed F. Daqaq. Flow energy harvesters with a nonlinear restoring force.

## RECOMMENDATION LETTERS